Trying to find math inside everything else

Archive for March, 2015

SoP Portfolios

When we learned about planning back in grad school, we were told that if something is important, you need to assess it; if you don’t assess it, then it’s not important. When the Common Core Standards came out, most math teachers were very excited about the Standards of Practice. The problem was, of course, that the Standards of Practice are hard to assess. So most standardized tests that use the Common Core don’t assess them, which of course means they don’t get implemented in the same way as the content standards. The Standards of Practice are important to me (though I frame them as the Mathematical Habits of Mind), and that means I need to find a way to assess them. But I’ve never had a really good way to test them before – I was always kind of making it up as I went along. Now, though, I think I’ve hit on something now that really works.

After seeing Ashli’s video about not putting grades on papers, I stopped doing it this year – but having the grades still be there in the online gradebook wasn’t quite what I wanted to do, and it became very hard to keep track things, especially because classwork and homework were what I used to measure the Standards of Practice. This semester I gave written feedback on all the assignments that I’ve given but recorded no grades – not even in my own gradebook – the only thing I kept track of was if something was incomplete or missing.

If we decide that every assignment is a formative assessment, we can’t possibly grade it as students are learning the material. So instead each assignment is like a first draft (or second or third) and students can read the feedback that I gave and make changes in order to improve their work. Come the end of the marking period (or eventually the end of the semester) students create a portfolio of their work. They don’t need to include everything that they’ve done but rather a representative sample that shows that they apply the Standards of Practice/Habits of Mind as they work.

The portfolio has a cover sheet (shown below) that that asks them to reflect on what habits they have used in their mathematical work this semester.

They have to find evidence of their own habits in their work and write a few sentences citing that evidence. I gave suggestions of which assignments might be easier to find evidence of those habits in. And they only had to include work that they cited as evidence as part of the portfolio.

To get us started we read through the rubrics that I created for the habits and created posters of what those habits might look like when doing assignments. We have them hanging on the walls of my classroom – that way I can referr to them easily when something comes up (such as when we worked on Des-man, I tried to emphasize the tinkering nature of the process).

CAM00640CAM00641CAM00642 CAM00643

The first portfolios coming in have been graded and some of them were stellar and others need some work, but it was the first time and they are not really used to this whole reflective idea. But I have noticed that most of my students have started to use that vocabulary more and have become more aware of the kind of things that they are expected of them in the long-term, not just immediate math facts. I think if I start this from the beginning next year it’ll create a really great culture of thinking using the habits and the standards of practice.

Advertisements

Counting Circles

Because I had different warm-up routines I wanted to try, I’m this week ending my second go at Counting Circles, and won’t be using them again until next year. But they’ve had a great run! I think the students got a lot out of them, and I experimented with them in lots of different ways, a few of which I captured as pictures, so I wanted to share them below.

I started, as with Sadie's recommendation, with just a simple off-decade 10s, to practice the idea.

I started, as with Sadie’s recommendation, with just a simple off-decade 10s, to practice the idea.

Inequality

One of the earlier things I tried was do work with an open inequality – that can count by any amount they want, as long as they don’t go below 40.

Binomials

Later on, we counted by monomials and, then, binomials. A fun thing that tricks them up is to swap the order of the binomial. (Commutative property!) Then see how starts adding the wrong thing together, just because they were going left to right.

Binomials with Subtraction

Counting up with one term and down with another can take a few moments for some students.

Later, after we had done exponential functions, I tried out a geometric sequence. But I had to make sure I started low enough that we could get around the class!

Later, after we had done exponential functions, I tried out a geometric sequence. But I had to make sure I started low enough that we could get around the class!

Another geometric sequence was the powers of 10. I mostly wanted to make sure they could name them all! They weren't allowed to just say digits for this one, they had to say the names.

Another geometric sequence was the powers of 10. I mostly wanted to make sure they could name them all! They weren’t allowed to just say digits for this one, they had to say the names.

Technically this one is still geometric, though it didn't feel the same. But I also was a stickler here, too - if a kid said "2 x 26" that's what I wrote, instead of "2x^26"

Technically this one is still geometric, though it didn’t feel the same. But I also was a stickler here, too – if a kid said “2 x 26” that’s what I wrote, instead of “2x^26”

As my last thing, today we did a quadratic counting circle. Now, we haven't done quadratic functions yet - that starts next week. So this was somewhat of a preview. They also weren't expecting the perfect squares - only one students noticed that in time to help them on their turn. There was a lot more collaboration on this circle because they had to refer back explicitly to what the last person did. I'll do two more of these (triangle numbers tomorrow), and then that's it!

As my last thing, today we did a quadratic counting circle. Now, we haven’t done quadratic functions yet – that starts next week. So this was somewhat of a preview. They also weren’t expecting the perfect squares – only one students noticed that in time to help them on their turn. There was a lot more collaboration on this circle because they had to refer back explicitly to what the last person did. I’ll do two more of these (triangle numbers tomorrow), and then that’s it!