Trying to find math inside everything else

Natural Circle Measures

Yesterday I introduce radians to my students for the first time. I started out by asking why they thought a circle had 360°. There were a few good answers – four right angles makes a circle, so 4*90 is 360; a degree is some object they measured in ancient Greece, and so a circle was made of 360 of them; something to do with the number of days in the year. All good answered, but I told them it was completely arbitrary based on the Babylonian number system.

Once we decided that it was arbitrary, I asked them to come up with their own method of measuring a circle. I would classify their responses into three categories

  1. Divide the circle up into 200 “degrees” (most common)
  2. Divide the circle up into 100 “degrees”
  3. Divide the circle up into 2 “degrees” (least common)

I was expecting 100 “degrees” to be the most common, so I was very surprised to see that most of the students want to split the triangle into two sections, each with 100 parts.

I have been a proponent of tau for a while, as I thought it was natural to think of radians as pieces of a whole circle, but my students were clearly thinking of the circle as two semicircles right off the bat.

I pushed the students who came up with the third way in a whole class discussion. If this whole semicircle is one student-name-degree, what would you call this section? And so we got to using fractions of those degrees.

20160412_152234_HDR.jpg

That made a pretty easy transition into radians. I went a little into the history; instead of using a degree, some mathematicians decided to use names based on the arc length – and so that semicircle’s angle was 1 π radians, instead of 1 student-name-degree. And the fractions we used were the same.

This almost made me doubt my tau ways – maybe π was more natural. But then, as we started converting angles from degrees to radians, some students kept complaining that, for example, 90° was 1/2 π instead of 1/4, since it was clearly a quarter-circle – so maybe I can stay a tau-ist.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: