Trying to find math inside everything else

Posts tagged ‘geometry’

A Way to Foster Productive Struggle?

My school has been trying to better create conditions for productive struggle in our classes, because a lot of students have taken a very receiving stance. So early in our Area and Volume unit, I decided to use this task from Illustrative Mathematics.

1_745c7d05e1fdafd29cf6e8e5ca7f8117

The task is a 7th grade task, and so involved nothing new for my high school geometry students – just area and perimeter/circumference. But the task has a lot of parts, not all of which are obvious from looking at it. So I gave them task, and then I was “less helpful.” In fact, I barely spoke during the lesson, only quietly clarifying things, but reflecting their proximity questions back towards themselves and their other group members.

Almost every group that attempted the task solved the problem on their own. (I followed up with an extension where they designed their own stained class on the coordinate plane and found the price using the same pricing, for those who finished quickly.) I had a group of three girls who don’t usually feel very confident in my class feel like rock stars after figuring the whole thing out themselves.

A few days ago, I saw this tweet:

I thought it really applied here. While the content was still related to what we were learning in high school geometry, the opportunity to solve a complex task with little scaffolding was really helped by using a task from an earlier grade. I recommend it.

Advertisements

The Great Geometry Review

Since Kate asked us to post more unsexy things, I thought I would throw up this review book I made for geometry, which basically covers all the things students should “know” (not necessarily be able to do, or deeper understandings) for the course, especially for the NY Regents (Common Core). The students can fill in the blanks and are then left with a nice study guide. So far my students seem to like it! (Although one student said they wouldn’t do it if they didn’t get a grade for it – so frustrating!

Great Geometry Book (doc)

Great Geometry Book (pdf)

Circles, Lines, and Angles

My math coach gave me this idea as we were planning my Circles unit. I think it went fairly well, so I’ll share it here. The idea is that we have, essentially, three basic objects that we’ve combined in different ways in geometry: circles, lines (including segments), and angles. So, as an opening activity to the unit, the task was this:

“Think of as many ways as possible to combine those three objects.”

First they brainstormed individually, as I reminded them that they can use multiple lines or angles or circles if they wanted. Then they went up to groups and made a master list per pair or group, eliminating ones that were “pretty  much” the same. I gave them some vocabulary based on what I saw they drew, and they had to use that vocabulary to describe what each drawing had. Finally, they chose one example and created one neat, fully correct example, in color that we combined into class posters. (I approved what they chose, to ensure a variety of possible layouts.)

20160414_144226_HDR 20160415_075653_HDR

Between my two classes, they came up with almost every scenario I could think of that we would learn in the unit, with the exception of Tangent Line & Radius, which I drew and put in myself. Now they are hanging in the classroom, acting as a guide for our journey into circles.

Angle Chasing

On Friday our school was supposed to have a Quality Review, but it was canceled at the last minute. (That’s a whole ‘nother story.) But that pushed me to do a lesson that I probably wouldn’t’ve done otherwise, so that’s good. I actually think it went pretty well.

I noticed in our last exam that I should probably explicitly teach angle chasing as a problem solving strategy, so I asked the MTBoS for some good problems. Justin Lanier came through in the most wonderful way. So I picked out some problems into a nice sequence that would use a bunch of the theorems we’ve already done.

I wanted the students to work as a group up on the whiteboards, so I gave each person in each group a different color marker. I then had the students write a key in the corner. Each student’s color represented 1-3 of the theorems that they would have to use to solve the problems. Then they would draw up the diagram of the problem. As they went through, each person was only allowed to write when their theorem was used to deduce the measure of the angle. That way, with the colors, I could actually trace through the thought processes they used to solve the problem, which was really nice. (I wonder if I can use that as an assessment some how, having students trace through the same process. Maybe as a warm-up, once I get my smartboard working again.)

Here’s some pics of their great work.

20151211_133820 20151211_134150 20151211_134918 20151211_135139

Building Quadrilaterals and Their Diagonals

I wanted a lesson to explore the properties of the diagonals of different types of quadrilaterals, but the curriculum map I was following just lead to Khan Academy, and that’s not really my speed. And some scanning through MTBoS resources didn’t find me what I wanted, but chatting out my half-formed ideas with Jasmine in the morning focused the idea into what I did in class today.

I started by having the students draw 6 triangles: 3 scalene, non-right triangles; 1 isosceles non-right triangle; 1 scalene right triangle; and 1 isosceles right triangle. Then we used each of those figures to create a quadrilateral by making some sort of diagonal. Each time, I asked them to identify the quadrilateral and what they noticed about the diagonals.

Screen Shot 2015-11-23 at 9.29.43 PMScreen Shot 2015-11-23 at 9.30.35 PM

 

Screen Shot 2015-11-23 at 9.51.13 PM

 

 

 

 

First, take one of the scalene triangles and reflect it over one of its sides. Thus we created a kite – which we know because the reflection creates the congruent adjacent sides. Then we can use the properties of isosceles triangles – we know the line of reflection is the median of the isosceles triangles because of the reflection, so it is also the altitude, meaning the diagonals are perpendicular.

 

Screen Shot 2015-11-23 at 9.29.43 PM

Screen Shot 2015-11-23 at 9.33.33 PM

 

 

 

 

Then, take another scalene triangle and reflect is over the perpendicular bisector of one of the sides. This makes an isosceles trapezoid – we know the top base is parallel to the bottom base because they are both perpendicular to the same line, and it’s isosceles because of the reflected side of the triangle. Then we notice the diagonals are also made of a reflected side of the triangle – and so we can conclude that the diagonals of an isosceles trapezoid are congruent.

Screen Shot 2015-11-23 at 9.29.43 PM Screen Shot 2015-11-23 at 9.34.33 PM

 

 

 

 

For the third one, I asked them to draw a median and then rotate the triangle 180°. The trickiest bit here is to prove that this is a parallelogram – previously we had classified the quadrilaterals by their symmetries, so using the symmetry definition we could say any quad with 180° rotational symmetry is a parallelogram. Or we can use the congruent angles to prove the sides are parallel. Once we did that, we saw that, because we used the median, that the intersection of the diagonals is the midpoint of both – and thus the diagonals bisect each other.

I then tasked them to figure out how to make a rhombus, rectangle, and square out of the remaining triangles using the triangles. Because we proved the facts about the diagonals of the parent figures, we could then determine the properties of the diagonals of the child figures.

Screen Shot 2015-11-23 at 10.20.00 PM Screen Shot 2015-11-23 at 9.40.37 PM Screen Shot 2015-11-23 at 9.41.27 PM

 

 

 

 

 

I think it went pretty well – the students performed the transformations and easily saw the connections between the diagonals. Tomorrow I think we’ll do something about whether or not those diagonal properties are reversible – if every quad with perpendicular diagonals is a kite, for example.

Crossing the Transverse

Oh my god, I haven’t blogged since August! This has been a hell of a year, let me tell you. But maybe I’ll tell you in another post, because this one is about the new game I made in my Geometry class. (My first non-Algebra game!)

So the game is called Crossing the Transverse. The goal of the game (pedagogically) is to help identify the pairs of angles formed by lines cut by a transversal, even in the most complex of diagrams. The goal of the game (play-wise) is to capture your enemy’s flagship.

Here’s the gameboard:

Crossing the Transverse Map

I printed out the board in fourths, on four different pieces of card stocked, and taped them together to make a nice quad-fold board. Then I made the fleet of ships out of centimeter cubes I had, by writing in permanent marker on the pieces the letter for each ship.

Quad Fold Board

Here’s the rules.

In the game, each type of ship moves a different way, which makes it feel a lot like chess – trying to lay a trap for the enemy flagship without being captured yourself.  Many of my students really enjoyed it when we played it yesterday. Today, though, to solidify, I followed up with this worksheet where they had to analyze the angles of a diagram much like on the game board. They did pretty well on it, so I’m satisfied!

Materials

Crossing the Transverse Rules

Printable Map (Prints on 4 pages)

No Stars Printable Map (If printing the background galaxy is not for you, here’s a more barebones version.)

Zip File with Everything, including Pages, Doc, and GGB files